Travaux Dirigés de Géométrie Fiche n° 2

Dans le plan \mathbb{R}^2 , on note (x,y) les coordonnées dans le repère ou la base canonique.

- 1. Représenter les vecteurs $\vec{u}=(1,2); \vec{v}=(3,4); \vec{w}=(5,6)$; les vecteurs \vec{u} et \vec{v} sont-ils colinéaires? Exprimer \vec{w} comme Combinaison Linéaire de \vec{u} et \vec{v} .
- **2.** $\vec{a} = \left(-\sqrt{12}, \frac{2}{3}\right), \vec{b} = \left(\sqrt{3}, -\frac{1}{3}\right)$ et $\vec{c} = (\sqrt{3}, 9)$; \vec{a} et \vec{b} sont-ils colinéaires? \vec{b} et \vec{c} sont-ils colinéaires?
- 3. Donner une équation cartésienne de la droite passant par A=(1,-2) et de vecteur directeur $\vec{u}=(-3,4)$.
- 4. Donner une équation cartésienne de la droite (AB) lorsque A=(3,4) et B=(6,-2). Les points C=(2,10/3)et D = (11/3, 41/9) appartiennent-ils à la droite (AB). Quelles sont les coordonnées des points d'intersection de (AB) avec les axes de coordonnées. Quel est le point d'abscisse -3 de (AB) et celui d'ordonnée -4.
- 5. Donner une équation cartésienne de la droite passant par l'origine et parallèle à la droite x+y-1=0
- 6. Donner une représentation paramétrique de la droite (AB), lorsque A=(1,-2) et B=(3,1). Placer les points de paramètre -1 et 3/2. Le point R = (8/3, 1/2) appartient-il à la droite (AB). Quelles sont les coordonnées des points d'intersection de (AB) avec les axes de coordonnées.
- 7. Montrer que $\mathcal{A} = \begin{cases} x = \sqrt{2}t + 1 \\ y = -2t 1 \end{cases}$ te \mathbb{R} et $\mathcal{B} = \begin{cases} x = -2k + 3 \\ y = 2\sqrt{2}(k 1) 1 \end{cases}$ $k \in \mathbb{R}$ sont deux représentations paramétriques de la même droite. Donner une équation cartésienne de cette droite.
- 8. Donner une équation cartésienne de la droite \mathcal{D} représentée par $\begin{cases} x = 1 t \\ y = 2 3t \end{cases}$ $t \in \mathbb{R}$.
- 9. Donner une représentation paramétrique de la droite passant par A = (1, -2) et parallèle à la droite d'équation cartésienne x + 2y - 1 = 3.
- 10. Déterminer l'intersection $\mathcal{D} \cap \mathcal{D}'$ lorsque $\mathcal{D}: 7x + 8y = 2$ et $\mathcal{D}': 9x + 10y = 4$ puis lorsque $\mathcal{D}: -9x + 15y = 1$ et $\mathcal{D}': 6x - 10y = \frac{-2}{3}$ et enfin lorsque $\mathcal{D}: (\sqrt{3} + 1)x + 4y = 7$ et $\mathcal{D}': \frac{1}{2}x + (\sqrt{3} - 1)y = 1$.
- 11. Déterminer le centre de gravité du triangle ABC lorsque $A = (1, \overline{2}), B = (0, 3), C = (-1, -4).$

EXERCICE 2

- A, B et C sont trois points non alignés
- 1. Sachant que $\overrightarrow{EA} + 2\overrightarrow{EB} = \overrightarrow{0}$, exprimer \overrightarrow{AE} en fonction de \overrightarrow{AB} .
- **2.** Sachant que $2\overrightarrow{FB} \overrightarrow{FC} = \overrightarrow{0}$, exprimer \overrightarrow{AF} comme Combinaison Linéaire de \overrightarrow{AB} et de \overrightarrow{AC} .
- 3. Représenter les cinq points A, B, C, E, et F et donner leurs coordonnées dans le repère $(A, \overrightarrow{AB}, \overrightarrow{AC})$.
- **4.** Soit I le milieu de [A, F], montrer que les points I, E et C sont alignés.
- **5.** Soit J le milieu de [A, C], montrer que les points J, E et F sont alignés.
- **6.** Quelle est la nature du quadrilatère IBCJ?

EXERCICE 3

- A, B et C sont trois points non alignés.
- **1.** Construire L, M, N tels que $\overrightarrow{CL} = \frac{1}{4}\overrightarrow{CA}, \overrightarrow{MB} = \frac{1}{3}\overrightarrow{MA}, \overrightarrow{BN} = \frac{1}{2}\overrightarrow{BC}$. Montrer que L, M et N sont alignés. Déterminer les coordonnées de ces trois points dans le repère $(A, \overrightarrow{AB}, \overrightarrow{AC})$.
- **2.** On note I le milieu du segment [B,C]. Une droite passant par I coupe les droites (AB) en D et (AC) en E. Déterminer le lieu des points d'intersection des droites (BE) et (CD).

Indication: On pourra considérer le repère $(A, \overrightarrow{AB}, \overrightarrow{AC})$

EXERCICE 4

Dans le plan euclidien \mathbb{R}^2 , muni d'un repère orthonormé $(0,\vec{i},\vec{j})$, on considère les quatre points suivants :

$$A = (-3,0), B = \left(-1,\frac{1}{2}\right), F = \left(-1,-\frac{15}{4}\right), K = \left(-3,-\frac{17}{4}\right).$$
1. Montrer que le quadrilatère $ABFK$ est un parallélogramme.

- **2.** Donner une équation cartésienne de la droite (BK).
- **3.** Donner les coordonnées du milieu I de [FK].
- **4.** Montrer que les droites (AI) et (FK) sont orthogonales.
- **5.** Calculer la norme des vecteurs \overrightarrow{AK} , \overrightarrow{FK} , \overrightarrow{AF} et \overrightarrow{AI} . Quelle est la nature du triangle \overrightarrow{AFK} ?
- **6.** Calculer l'aire du parallélogramme ABFK.
- 7. Donner une équation cartésienne du cercle de diamètre [AF].
- **8.** Déterminer la distance du point A à la droite (BK).
- 9. Déterminer les coordonnées de H projeté orthogonal de A sur la droite (BK).
- 10. Soit α l'angle orienté (FA, FK), déterminer les valeurs de $\cos(\alpha)$ et de $\sin(\alpha)$.