Devoir Maison, à rendre pour le 16 novembre

0.1 Géométrie dans le plan et l'espace

Exercice 1. La notion de déterminant : interprétation géométrique

- 1) Soit $\vec{V_1}$ et $\vec{V_2}$ deux vecteurs non nuls de \mathbb{R}^2 . Montrer que l'aire du parallélogramme délimité par les vecteurs $\vec{V_1}$ et $\vec{V_2}$ est la même que l'aire du parallélogramme délimité par $\vec{V_1}$ et $\vec{V_2} + c.\vec{V_1}$, où c est un scalaire.
- V_1 et $V_2 + c.V_1$, ou c est un scalare. 2) Montrer que si A est une matrice 2×2 , $A = \begin{pmatrix} u_1 & v_1 \\ u_2 & v_2 \end{pmatrix}$,

alors l'aire du parallélogramme déterminé par les vecteurs $\vec{u}=(u_1,u_2), \vec{v}=(v_1,v_2)$ est égale à $|\det A|$.

Indication: Travailler d'abord avec une matrice diagonale D; puis utiliser la question 1) pour comparer le cas d'une matrice triangulaire avec le cas de la matrice diagonale; enfin traiter le cas général, la matrice: $A = \begin{pmatrix} u_1 & v_1 \\ u_2 & v_2 \end{pmatrix}$, avec $u_1, u_2, v_1, v_2 \in \mathbb{R}$.

Exercice 2. Intersection de deux plans

Les plans P et P' ont pour equations cartésiennes :

$$\begin{cases} 2x + y - 2z - 3 = 0 \\ x + y + 3z - 2 = 0 \end{cases}$$

Décrire l'intersection de ces plans.

Exercice 3. Produit vectoriel

- 1. Montrer que $(\vec{u}.\vec{v})^2 + ||\vec{u} \wedge \vec{v}||^2 = ||\vec{u}||^2 \cdot ||\vec{v}||^2$
- 2. Montrer que $\vec{u} \wedge (\vec{v} \wedge \vec{w}) = -(\vec{u}.\vec{v}).\vec{w} + (\vec{u}.\vec{w}).\vec{v}$
- 3. En déduire que $\vec{u} \wedge (\vec{v} \wedge \vec{w}) + \vec{v} \wedge (\vec{w} \wedge \vec{u}) + \vec{w} \wedge (\vec{u} \wedge \vec{v}) = 0$

Exercice 4. Equations de plans

Dans l'espace euclidien \mathbb{R}^3 , on considère les deux plans \mathcal{P} , \mathcal{Q} donnés par leur equation cartésienne : $\mathcal{P}: x-y+z-2=0, \ \mathcal{Q}: x+2y-z+1=0.$

- 1) Montrer que ces deux plans sont sécants en une droite \mathcal{D}
- 2) Donner une représentation paramétrique de la droite \mathcal{D}

Soit Δ la droite passant par A = (2, 4, 3) et dirigé par $\vec{u} = (-1, -3, 2)$. On considère aussi le point B = (1, 1, 1).

- 3) Donner une représentation paramétrique de Δ et montrer que $B \neq \Delta$.
- 4) Donner une equation cartésienne du plan \mathcal{R} passant par B contenant la droite Δ .
- 5) Calculer la distance du point B au plan Q.
- 6) Donner une représentation paramétrique de la droite \mathcal{E} passant par B et perpandiculaire au plan \mathcal{Q} .
- 7) Donner les coordonnées du point K projeté orthogonal de B sur le plan \mathcal{Q} . Calculer la distance BK.

On considère le point C = (9, -3, 3).

- 8) Donner les coordonnées du milieu I du segment [BC]
- 9) Donner une equation cartésienne du plan S du segment [BC]
- 10) Donner une equation cartésienne du plan \mathcal{T} passant par C et orthogonal à Δ
- 11) Donner les coordonnées du point L intersection de \mathcal{T} et de Δ .
- 12) Calculer la distance CL et la norme ||u||. Donner les coordonnées du produit vectoriel $\vec{u} \wedge \vec{CA}$
- 13) Vérifier que l'on a $\frac{||u \wedge \vec{CA}||}{||\vec{u}||} = CL$.

0.2 Nombres complexes

Exercice 5. Passage de la forme algébrique à la forme trigonométrique et inversement

- 1) Ecrivez le nombre complexe $z=-1+i\sqrt{3}$, sous forme trigonométrique, puis sous forme exponentielle.
- 2) Donnez le module et un argument de $Z = (1 \sqrt{2})e^{i\frac{\pi}{4}}$.

Exercice 6. Trouver la forme algébrique de $Z = \frac{1-e^{i\theta}}{1+e^{i\theta}}$ où θ est un réel différent de $\pi + 2k\pi, k \in \mathbb{Z}$.

Exercice 7. Rotations avec les complexes

Soient E, F, D les points d'affixes respectives :

$$z_E = 1 + i\sqrt{3}$$
$$z_F = 1 - i\sqrt{3}$$
$$z_D = 2i$$

- 1) Calculer l'affixe du point C image de D par la rotation de centre O (d'affixe $z_O=0$ et d'angle $\frac{\pi}{2}$.
- 2) Représenter les points dans le plan complexe dont un repère orthonormé direct est (O, \vec{u}, \vec{v}) . Faire le dessin.
- 3) Soit le triangle (EFC).
- a) Calculer l'angle défini par le couple de vecteurs $(\overrightarrow{CE}, \overrightarrow{CF})$.
- b) Déterminer la nature du triangle (EFC).
- c) Déterminer le centre et le rayon du cercle Γ circonscrit au triangle.
- 4. Soit r la rotation de centre F et d'angle $\frac{\pi}{3}$.
- a) Quelles sont les images E', F', C' des points E, F, C par r?
- b) Quelle est l'image directe de Γ par r?
- c) Déterminer l'image réciproque de Γ par r.