Symplectic Models for Unitary groups
A joint work with Dipendra Prasad

Definitions

Let W_i be a symplectic vector space of dimension $2i$ over F. Given a symplectic vector space over F, we have a skew-hermitian space $W = W \otimes E$ over E which can be used to define a unitary group $U(W_i)$ with $(Sp(W_i))^2 \subset U(W_i)$.

[Klingen parabolic]

For $G = Sp(W)$ (or $U(W)$), the Kleinparabolic subgroup Q (resp. P) is the stabilizer of an isotropic line $\langle w \rangle$ in W (resp. W_2). Since any two isotropic vectors in W (or W_2) are conjugate under $Sp(W)$ (or $U(W_2))$, the Kleinparabolic subgroups are uniquely conjugate.

[Klingen mirabolic]

The subgroup Q_1 of Q (resp. P^1 of P) stabilizing the isotropic vector w itself. Unipotent radical of P^1_n:

$N_{P^1_n}(G) = \begin{pmatrix}
1 & x_{2n-1} & \cdots & x_{n-2} & x_n & 2 \\
0 & 0 & \cdots & 0 & 1 & 0 \\
0 & 0 & \cdots & 0 & 0 & 1 \\
0 & 0 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & 0 & 0
\end{pmatrix}$

Unipotent radical of Q_1:

$N_{Q_1_n}(S) = \begin{pmatrix}
1 & x_{2n-1} & \cdots & x_{n-2} & x_n & 2 \\
0 & 0 & \cdots & 0 & 1 & 0 \\
0 & 0 & \cdots & 0 & 0 & 1 \\
0 & 0 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & 0 & 0
\end{pmatrix}$

Exact sequences:

$1 \rightarrow F \rightarrow N_{Q_1_n}(G) \rightarrow F^{2n-4} \rightarrow 1$

$1 \rightarrow F \rightarrow N_{Q_1_n}(S) \rightarrow F^{2n-2} \rightarrow 1$

The character μ

Fix a non-trivial character of F, ψ. Assuming $E = F(\sqrt{a})$, $d \in F^*$, ψ_d character on trace zero elements of E defined by $\psi_d(x) = \psi(\sqrt{a}x)$. Then ψ_d is the character on $N_{Q_1}(G)$ defined by

$\begin{pmatrix}
1 & x_{2n-1} & \cdots & x_{n-2} & x_n & 2 \\
0 & 0 & \cdots & 0 & 1 & 0 \\
0 & 0 & \cdots & 0 & 0 & 1 \\
0 & 0 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & 0 & 0
\end{pmatrix} = \psi_d(x_{2n-1} + y_{2n-1})$

Since $x_{2n-1} = -y_{2n-1}$ for elements in $N_{Q_1}(S)$, the character ψ_d is trivial on $N_{Q_1}(S)$. Then define a character $\mu : N_{Q_1}(G) \rightarrow \mathbb{C}$ which is either ψ_d or trivial.

Local Results

Proposition:

Let π be a smooth representation of the Kleinparabolic subgroup P^1_n of $U(W_n \otimes E)$ which is distinguished by the Kleinparabolic subgroup $Q^1_n \subset Sp(W_n)$, and for the unipotent radical $N_{Q_1}(G)$ of P^1_n, let π_μ be the maximal quotient of π on which $N_{Q_1}(G)$ acts by μ. Then π_μ is a smooth representation of the Kleinparabolic subgroup P^1_n of $U(W_n \otimes E)$ which is distinguished by the Kleinparabolic subgroup $Q^1_n \subset Sp(W_n-1)$. Corollary:

A smooth representation π of the Kleinparabolic subgroup P^1_n of $U(W_n \otimes E)$ which is distinguished by the Kleinparabolic subgroup Q^1_n of the symplectic subgroup $Sp(W_n)$, as well as on the symplectic subgroup $Sp(W_n)$, is identically zero.

The same is expected for square-integrable and even tempered representations, indeed:

Conjecture

For F a local field, let $\{ \pi \}$ be an L-packet of irreducible admissible representations of $U(n, n)(F)$ which we assume to be the L-packet associated to an Arthur packet on $U(n, n)(F)$. Then some member of the set $\{ \pi \}$ is distinguished by $Sp_{2n}(F)$ if and only if under basechange, the representation $BC(\pi)$ of $GL_{2n}(E)$ is distinguished by $Sp_{2n}(E)$.

Remark:

Given the classification of representations of $GL_{2n}(E)$ which are distinguished by $Sp_{2n}(E)$ (using Offen-Sayag and Gan-Gross-Prasad) a consequence of the above conjecture is that there should be no tempered representations of $U(n, n)(F)$ which are distinguished by $Sp_{2n}(F)$.

A Global Analogue

Let K be a quadratic extension of a number field k.

Theorem

Let Π be a cuspidal automorphic representation of $U(W_n \otimes K)$. Then the period integral of functions in Π on the Kleinparabolic subgroup Q^1_n of the symplectic subgroup $Sp(W_n)$ is zero.

Degenerate Whittaker model for $GL_2(F)$

In Induced representations of reductive p-adic groups II, Zelevinsky defines a character θ on the group U of upper triangular unipotent elements of $GL_2(F)$ by

$\theta(u) = \psi(\sum_i u_{i,i+1})$,

where \sum runs over all integers $1, 2, \ldots, n - 1$ except,

$n - \lambda_1, n - \lambda_2, \ldots, n - \lambda_1 - \lambda_2 - \cdots - \lambda_{k-1}$,

where the integers λ_i are inductively defined with λ_1 being the highest nonzero derivative of π, A_2 the highest nonzero derivative of π^{λ_1}, and so on.

It is a theorem of Zelevinsky (Corollary 8.3) that there is a linear form $\lambda : \mathbb{C} \rightarrow \mathbb{C}$ on which the group U of upper triangular unipotent matrices acts by the character θ, and the space of such linear forms has dimension 1.

Conjecture

Let π be an irreducible admissible representation of $GL_n(F)$ which is distinguished by $Sp(W_n)$. Write π restricted to $SL(W_n)$ as a sum of irreducible representations $\pi = \sum \pi_{a_i}$ (with multiplicity 1). Then exactly one of the representations π_{a_i} is distinguished by $Sp(W_n)$, and the one which is distinguished by $Sp(W_n)$ is the one which carries the invariant linear form θ of Zelevinsky defined above.

(There is a unique representation of $SL(W_n)$ carrying the invariant linear form θ by the multiplicity one assertion of Zelevinsky for the group $GL_2(F)$.)

https://arxiv.org/abs/1611.01621