

Symplectic Models for Unitary groups

A joint work with Dipendra Prasad

Definitions

Let W_i be a symplectic vector space of dimension 2i over F. Given a symplectic vector space over F, we have a skew-hermitian space $W_E = W \otimes E$ over Ewhich can be used to define a unitary group $U(W_E)$ with $Sp(W) \subset U(W_E)$.

[Klingen parabolic]

For G = Sp(W) (or $U(W_E)$), the Klingen parabolic subgroup Q (resp. P) is the stabilizer of an isotropic line $\langle w \rangle$ in W (resp. W_E). Since any two isotropic vectors in W (or W_E) are conjugate under Sp(W) (or $U(W_E)$), the Klingen parabolic subgroups are unique up to conjugacy.

[Klingen mirabolic]

The subgroup Q^1 of Q (resp. P^1 of P) stabilizing the isotropic vector witself. Unipotent radical of P_n^1 :

 $\mathsf{N}_{n}(G) = \begin{cases} \begin{pmatrix} 1 \ x_{2n-1} \ x_{2n-2} \cdots \ x_{2} \ z \\ 0 \ 1 \ 0 \ 0 \ y_{2} \\ 0 \ 0 \ 1 \ \cdots \ 0 \ y_{3} \\ 0 \ \ddots \ \vdots \\ 0 \ \cdots \ 1 \ y_{2n-1} \\ 0 \ \cdots \ 0 \ 0 \ 1 \end{pmatrix}, \begin{array}{l} x_{i} \ , \ y_{i} \ \in E, \ z \in F \\ , x_{i} = \ \bar{y}_{i}, \ 2 \le i \le n-1, \\ x_{i} = -\ \bar{y}_{i}, \ n \le i \le 2n-1 \end{cases} \end{cases}$

```
Unipotent radical of Q_n^1:
```

$$\begin{split} \mathsf{N}_{n}(S) &= \\ \left\{ \begin{pmatrix} 1 & x_{2n-1} & x_{2n-2} & \cdots & x_{2} & z \\ 0 & 1 & 0 & 0 & y_{2} \\ 0 & 0 & 1 & \cdots & 0 & y_{3} \\ 0 & & \ddots & \vdots \\ 0 & & & \cdots & 1 & y_{2n-1} \\ 0 & \cdots & 0 & 0 & 1 \end{pmatrix} \right\}, & x_{i}, y_{i}, z \in F \\ x_{i} &= y_{i}, \ 2 \leq i \leq n-1, \\ x_{i} &= -y_{i}, n \leq i \leq 2n-1 \end{split}$$
Exact sequences:

$$1 \to F \to N_n(G) \to F^{4n-4} \to 1$$

 $1 \to F \to N_n(S) \to F^{2n-2} \to 1$

The character μ

Sarah Dijols

Fix a non-trivial character of F, ψ . Assuming $E = F(\sqrt{d}), d \in F^{\times}, \psi_d$ character on trace zero

Local Results

Proposition:

Let π be a smooth representation of the Klingen mirabolic subgroup P_n^1 of $U(W_n \otimes E)$ which is distinguished by the Klingen mirabolic subgroup $Q_n^1 \subset \operatorname{Sp}(W_n)$, and for the unipotent radical $N_n(G)$ of P_n^1 , let π_μ be the maximal quotient of π on which $N_n(G)$ acts by μ . Then π_μ is a smooth representation of the Klingen mirabolic subgroup P_{n-1}^1 of $U(W_{n-1} \otimes E)$ which is distinguished by the Klingen mirabolic subgroup $Q_{n-1}^1 \subset \operatorname{Sp}(W_{n-1})$. **Corollary**:

A smooth representation π of the Klingen mirabolic subgroup P_n^1 of $U(W_n \otimes E)$ which is distinguished by the Klingen mirabolic subgroup Q_n^1 of the symplectic subgroup $Sp(W_n)$ carries a nonzero μ_n -linear form for the group of the upper-triangular unipotent matrices in $U(W_n \otimes E)$ for μ_n given by:

 $\psi_d(\epsilon_1[x_1 + x_{2n-1}] + \epsilon_2[x_2 + x_{2n-2}] + \dots + \epsilon_{n-1}[x_{n-1} + x_{n+1}])$ where the ϵ_i are either 0 or 1. Note that the term x_n is missing on the right.

Corollary:

Any representation of U(n, n)(F)distinguished by $\operatorname{Sp}_{2n}(F)$ is a sub-quotient of a principal series representation of U(n, n)(F)induced from the Siegel parabolic (with Levi $\operatorname{GL}_n(E)$). In particular, a representation of U(n, n)(F) distinguished by $\operatorname{Sp}_{2n}(F)$ cannot be cuspidal.

The same is expected for square-integrable and even tempered representations, indeed :

Conjecture

For F a local field, let $\{\pi\}$ be an L-packet of irreducible admissible representations of U(n, n)(F) which we assume to be the L-packet associated to

A Global Analogue

Let K be a quadratic extension of a number field k.

Theorem Let Π be a cuspidal automorphic representation of $U(W_n \otimes K)$. Then the period integral of functions in Π on the Klingen mirabolic subgroup Q_n^1 of the symplectic subgroup $Sp(W_n)$, as well as on the symplectic subgroup $Sp(W_n)$ is identically zero.

Degenerate Whittaker model for $GL_n(F)$

In *Induced representations of reductive p-adic groups II*, Zelevinsky defines a character θ on the group *U* of upper triangular unipotent elements of $GL_n(F)$ by

$$\theta(u_{ij}) = \psi(\sum u_{i,i+1}),$$

where \sum runs over all integers $1, 2, \dots, n-1$ except,

$$n-\lambda_1, n-\lambda_1-\lambda_2, \cdots, n-\lambda_1-\lambda_2-\cdots-\lambda_{k-1},$$

where the integers λ_i are inductively defined with λ_1 being the highest nonzero derivative of π , λ_2 the highest nonzero derivative of π^{λ_1} , and so on.

It is a theorem of Zelevinsky (Corollary 8.3) that there is a linear form $\ell : \pi \to \mathbb{C}$ on which the group *U* of upper triangular unipotent matrices acts by the character θ , and the space of such linear forms has dimension 1.

Conjecture

Let π be an irreducible admissible representation of $GL(W_n)$ which is distinguished by $Sp(W_n)$. Write π restricted to $SL(W_n)$ as a sum of irreducible representations $\pi = \sum \pi_{\alpha}$ (with multiplicity 1). Then exactly one of the representations π_{α} is

elements of *E* defined by $\psi_d(e) = \psi(\sqrt{d}e)$. Then ψ_n is the character on $N_n(G)$ defined by

$$\psi_n \begin{pmatrix} 1 \ x_{2n-1} \ x_{2n-2} \cdots \ x_2 \ z \\ 0 \ 1 \ 0 \ y_2 \\ 0 \ 0 \ 1 \ \cdots \ 0 \ y_3 \\ 0 \ \ddots \ \vdots \\ 0 \ \cdots \ 1 \ y_{2n-1} \\ 0 \ \cdots \ 1 \ y_{2n-1} \\ 0 \ \cdots \ 0 \ 0 \ 1 \end{pmatrix} = \psi_d(x_{2n-1} + y_{2n-1}) = \\ \psi(\sqrt{d}[x_{2n-1} + y_{2n-1}])$$

Since $x_{2n-1} = -y_{2n-1}$ for elements in $N_n(S)$, the character ψ_n is trivial on $N_n(S)$. Then define a character $\mu : N_n(G) \to \mathbb{C}^{\times}$ which is either ψ_n or trivial.

sarah.dijols@hotmail.fr

an Arthur packet on U(n, n)(F). Then some member of the set $\{\pi\}$ is distinguished by $\operatorname{Sp}_{2n}(F)$ if and only if under basechange, the representation $BC(\pi)$ of $\operatorname{GL}_{2n}(E)$ is distinguished by $\operatorname{Sp}_{2n}(E)$.

Remark: Given the classification of representations of $GL_{2n}(E)$ which are distinguished by $Sp_{2n}(E)$ (using Offen-Sayag and Gan-Gross-Prasad) a consequence of the above conjecture is that there should be no tempered representations of U(n, n)(F) which are distinguished by $Sp_{2n}(F)$.

I2M Marseille; TIFR Mumbai

distinguished by $Sp(W_n)$, and the one which is distinguished by $Sp(W_n)$ is the one which carries the invariant linear form θ of Zelevinsky defined above.

(There is a unique representation of $SL(W_n)$ carrying the invariant linear form θ by the multiplicity one assertion of Zelevinsky for the group $GL_n(F)$.)

https://arxiv.org/abs/1611.01621